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Introduction

AlphaFold: the silver lining of the ‘protein folding problem’
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Proteins, the building blocks of life, play vital roles across all 
domains of life. �ese versatile biomolecules translate the 
information encoded in genes to conceive a vast array of 
discrete structures and functions that regulate life. Proteins 
translated from the information encoded in an organism’s DNA 
typically emerge as a single thread of amino acids from the 
manufacturing entities, ribosomes. �e amino acid sequence 
interlinked by peptide bonds determines the protein’s native 
structure, which further dictates its function. Altering the 
protein’s structure via its sequence can produce unprecedented 
implications, from rendering it toxic to completely 
incapacitating its functional activity. Comprehending the 
3-dimensional structure enables a mechanistic understanding 
of its function and how it can be modi�ed as required. For 
example, proteins can be engineered to catalyze speci�c 
reactions or selected as drug targets to address an epidemic.

 With pioneering techniques like next-generation 
sequencing being employed to unravel the genomes and 
proteomes of organisms, the wealth of information on gene and 
protein sequences has been accruing expeditiously. �ough the 
Protein Data Bank (PDB) boasts ~200,000 experimentally 
derived protein structures, it represents only a fraction of the 
billions of already deciphered protein sequences. 
Experimentally determining the 3-dimensional structures of 
proteins is o�en long and arduous, creating a bottleneck in the 
structural coverage of known proteins. Why, one might ask 
then, do we not try to determine the structure using the 
sequence since each unique sequence translates to a unique 
structure? Computational biologists and bioinformaticians have 
been trying to answer the same for decades, using alternative 
techniques like homology modeling to determine the structure 
of unknown proteins with sequences similar to an 
experimentally determined protein structure. Various 
computational tools, such as Robetta, Phyre2, SWISS-MODEL, 
and I-TASSER, use homology modeling, multiple alignments, 
and iterative simulations to predict the structure of proteins 
whose structures have not been determined experimentally. 

 However, these prediction models have several drawbacks, 
the most signi�cant being their inability to predict the structure 
of novel proteins with no homology to any known structures. 
�e complexities involved in protein folding prediction can be 
attributed to two major problems-

 �e energy function problem: High resource-intensive 
quantum mechanics simulations are required to calculate the 
exact electrostatic potential and bond energies of proteins to 
correctly predict the structure since even a small error in one 
single conformational energy may eventually lead to a 
completely di�erent fold prediction.

�e sampling problem- �e second problem arises from the 
�rst one in that each bond and energy potential must be taken 
into account for an accurate protein structure prediction, 
creating a colossal sample space. For example, simulating an 
ideal protein of only 50 amino acids, with constant bond 
lengths, each amino acid having two rotatable backbone 
bonds, and considering only 10-degree increments in each, 
1072 potential conformations would be obtained, each of 
which would need to be sampled to �nd the lowest energy 
state or the native state of the protein [1].

 �ough prediction techniques such as molecular dynamic 
simulations, fragment assembly, and machine learning 
perpetually upgraded their features of template-based 
modeling (TBM) or free modeling (FM), they still fell short of 
predicting structures to experimental accuracy [2]. 
Integrating Arti�cial Intelligence (AI) and Deep Learning 
(DL) to the problem of protein folding has proved a landmark 
step toward protein structure prediction. DeepMind’s 
AI-driven protein structure prediction model caused huge 
ripples when they aced the highly coveted and challenging 
Critical Assessment of Structure Prediction (CASP) in 2020. 
�e ‘protein folding problem’ that had eluded scientists for 
more than half a century was scrupulously addressed by the 
AlphaFold neural network [3].

 �e biennial blind test CASP allows computational 
biologists to evaluate their potential methods by predicting 
the structure of experimentally derived protein structures that 
had not yet been publicly released. �e AlphaFold method 
produced outstanding results in the 14th CASP assessment, 
with a huge disparity in the results produced by it and other 
competing methods. �e median accuracy of the protein’s 
backbone predicted by AlphaFold was 0.96 Å r.m.s.d 
compared to 2.8 Å r.m.s.d achieved by the second-best 
prediction method. In addition to this excellent feat, the 
predicted AlphaFold structures also produced highly precise 
side-chain conformations with better accuracy than 
template-based prediction methods using strong templates. 
�e AlphaFold method can also be scaled to very large, unique 
proteins for reliable prediction of domains and 
domain-packing. �e most unique feature of this prediction 
method is its precise, per-residue reliability prediction. 

 �e enhanced accuracy of the AlphaFold network is 
majorly owing to the incorporation of novel neural network 
architectures and training methods derived from the physical, 
geometric, and evolutionary constraints of the protein 
structures. �e novel architecture employs several distinct 
protein sequence databases to construct multiple sequence 
alignments (MSAs) and a pair representation that forms the 
initial representation of the targeted structure. �e evoformer 

neural network module extracts and assesses the MSA and 
templates through back-and-forth information exchange 
throughout the network. �e structure neural network 
module prioritizes the protein backbone’s orientation, taking 
into account the rotations and translations of the residues and 
localizing each side chain of each residue into highly 
constrained frames, and �nally, enforces local re�nement and 
energy minimization through gradient descent.

 �e pioneering machine-learning method has been 
implemented in various ambitious projects, including the 
structure prediction of the human proteome. Following 
decades of e�ort through experimental structure 
determination, only 17% of the total known human proteome 
could be deciphered. Utilizing the AlphaFold network for 
structure prediction allowed the coverage of almost the entire 
human proteome and resulted in con�dent prediction for 58% 
of residues, with high con�dence in 36% [4].

 Despite the breakthroughs in the precision of protein 
structure prediction, AlphaFold presents certain limitations. 
�e algorithm has been shown to perform poorly in cases of 
intrinsically disordered regions or proteins, which o�en 
overlap the regions of low accuracy in AlphaFold predictions 
[5]. �e algorithm also tends to present loops as secondary 
protein conformations, mostly as alpha helices, with only 
short loops of<20 amino acids being predicted with high 
accuracy [6]. �e algorithm has also been shown to predict 
either the apo-form or the holo-form of a protein. Increased 
conformational changes between the apo- and holo-forms of a 
protein decreased the e�ciency of AlphaFold in correctly 
predicting the protein’s structure [7]. A similar trend was also 
observed in AlphaFold’s predictions of mutated and native 
protein structures, with only very slight di�erences of less 
than 1Å r.m.s.d. between the backbones of the two [8].

 �e success of AlphaFold has laid the cornerstone for 
embedding DL in addressing other challenges across 
biosciences, such as protein function prediction, phylogenetic 
inference, genome engineering, systems biology, and data 

integration [9]. �ough the application of AI and DL to 
biosciences is still in its inception, it has made an enduring 
impact on one of the most poignant questions of biology- ‘the 
protein folding problem.’ Further advances are still required to 
provide the �nal sheen to this algorithm, allowing it to predict 
proteins to atomic accuracy.
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